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ABSTRACT

In the last several years, genetic algorithm (GA) has gained wide acceptance as a
robust optimization algorithm in almost all areas of science and engineering.
Polymer science and engineering is no exception. Researchers in this field have
devoted considerable attention to the optimization of polymer production using
objective functions and constraints that lead to products having desired material
properties. Multiple-objective functions have been optimized simultaneously. An
example is the minimization of the reaction time in a reactor (lower costs) while
simultaneously minimizing the concentration of side products (that affect the
properties of the product adversely). Several end-point constraints (equality or
inequality) may also be present, as, e.g., obtaining polymer of a desired molecular
weight. Again, this requirement stems from producing polymer having desired
strength. Solving such problems usually result in Pareto sets. A variety of adapta-
tions of GA have been developed to obtain optimal solutions for such complex
problems. These adaptations can be used to advantage in other fields too.
The applications of GA in areas of polymer science and engineering other than
polymerization systems are few and far between, but this field is now maturing,
and it is hoped that the future will see several newer applications.
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1. INTRODUCTION

Even though all animals and plants are comprised of long-chain molecules,
synthetic macromolecules were developed only in the 19th century. Their unusual
properties helped replace natural polymers in almost all fields. Indeed, polymers
are one of the most important materials today. Polymer science and engineering
has matured considerably over the past several decades, and the knowledge in this
area has grown immensely in diverse areas. Many paradigm shifts have taken place
in each of its various substreams over the years.[1] In recent years, a robust optimiza-
tion technique, namely, genetic algorithm (GA),[2–4] has been applied to solve several
interesting and often complex problems in different fields of polymer science and engi-
neering. These parallel similar developments in other fields of materials science and
engineering. Most of these developments have taken place in the realm of polymer
production. A common thread passes through these studies—the aim is to produce
product having desired material properties, while minimizing their cost of produc-
tion. Several adaptations have been developed in the original algorithm, and real-life
problems involving single-[2–6] as well as multiple[7–10]-objective functions have been
formulated and solved for the manufacture of polymers. Relatively few optimization
problems have been solved by using GA in other areas of polymer science and
engineering. These studies are reviewed here in the hope that it will spur further opti-
mization activity in these and other hitherto unexplored areas of polymer science.

2. APPLICATIONS OF GA IN POLYMER SCIENCE

AND ENGINEERING

A short summary of the applications of GA in polymer science and engineering
is now presented. There are different stages in the production of polymers, starting
from the molecular design of molecules, running through their manufacture in reac-
tors, and finally ending with their processing. In each stage, GA can be and has been
used. The maximum and most advanced applications are in the realm of polymeriza-
tion reactors, with only a few applications in the other spheres. We review these
applications here, with special emphasis on the several algorithmic adaptations
developed to obtain the optimal solutions.

2.1. Polymer Production

Chakravarthy et al.[5] and Ho et al.[6] were the first to adapt simple GA
(SGA)[2–4] and use it to optimize polymer production using decision variables that
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are continuous functions of time. Chakravarthy et al.[5] studied the optimization of
the bulk polymerization of methyl methacrylate (MMA). This is an interesting
and complex system, because it exhibits the Trommsdorff effect, which is associated
with an extremely sharp increase in the monomer conversion with time, at some
stage of polymerization. They used the temperature history, T(t), to minimize the
reaction time, tf, in a batch reactor, while simultaneously requiring the attainment
of the design values, xmd and mnd, of both the final (at t¼ tf) monomer conversion,
xm(tf), and the number average chain length, mn(tf), of the polymer product. The
latter constraint ensures the production of polymer having the desired material prop-
erties (strength, etc.). Thus, they solved the following problem

Min I½TðtÞ� ¼ tf

subject to :

xmðtfÞ ¼ xmd

mnðtfÞ ¼ mnd
bounds on TðtÞ
model equations

ð1Þ

The following equivalent mathematical problem involving penalty functions was
used to take care of the end-point constraints on xm and mn:

Min I½TðtÞ� ¼ tf þ w1½1� fxmðtfÞ=xmdg�2 þ w2½1� fmnðtfÞ=mndg�2
subject to :

bounds on TðtÞ
model equations

ð2Þ

The values of the two penalty parameters, w1 and w2, are taken to be very large
so that the second and third terms on the right-hand side of the expression for I in
Eq. (2) dominate over tf when xm(tf) and mn(tf) deviate from their design values.
These terms, thus, act as penalties and force the constraints to be satisfied.

Ho et al.[6] carried out a similar time-optimal control of a continuous-flow stir-
red tank reactor (CSTR) in which random copolymerization of MMA and vinyl
alcohol (VA) was taking place, during start-up or grade-change. Clearly, the use
of two comonomers leads to desirable material properties. They used an adaptation
of SGA. This system does not show the Trommsdorff effect but is quite complex
because of the simultaneous polymerization of two monomers. They obtained the
optimal jacket temperature history and the history of the flow rate of VA to minimize
the transition time (during start-up or grade-change). At the same time, they used
two end-point constraints: the polymer product was forced to be of a desired mole-
cular weight (strength, etc., of the material), and the average mole fraction of VA in
the polymer product was to have a desired value. Penalty functions were used.

More recently, guided SGA was used by Mankar et al.[11] to carry out an experi-
mental on-line optimization study on MMA polymerization in a specially made
viscometer-reactor assembly. An off-line computed optimal temperature history was
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implemented on this system. A planned disturbance (heater failure) was introduced
after the start of polymerization. The temperature history was reoptimized on-line
after the introduction of this disturbance, to save the batch, i.e., to produce a polymer
product having the originally planned value of mn, in the minimum possible (remain-
ing) reaction time, and implemented experimentally. The results were quite satisfac-
tory and demonstrated the power of (guided) SGA for on-line experimental work.

The first use of multiple-objective functions in polymer reaction engineering was
for an industrial nylon-6 semibatch reactor.[9] The two objective functions used were
to minimize (i) the total reaction time, tf, and (ii) the concentration, [C2]f, of the cyc-
lic dimer, an undesired by-product, in the product. The second objective function is
related to the material properties of the final polymeric product. Cyclics in the pro-
duct lead to processing problems as well as give an unacceptable finished fabric and
so are minimized. End-point constraints were imposed on the monomer conversion,
xm, in the product stream, as well as on the number average chain length, mn, of the
product, so that design values, xm,d and mn,d, are attained. The decision variables
used in this study were (i) the rate of release, VT(t), of the vapor from the semibatch
reactor (a function of time, t) that influenced the pressure in the reactor and (ii) the
jacket fluid temperature, TJ, a scalar. Non-dominated sorting genetic algorithm,
NSGA-I,[7–9] first developed by Srinivas and Deb[8] for decision variables that were
scalars, was adapted to apply to decision variables that were continuous functions of
time. Pareto sets of optimal solutions were obtained for a specified value of the feed
water concentration (see Fig. 1). For a two-objective function problem, e.g., the Par-
eto set is the locus of (equally good) optimal points so that if one moves from any

Figure 1. Comparison of the Pareto solutions for an industrial semibatch nylon-6 reactor for
two different choices of decision variables [solid lines:[12]; broken lines:[9]]. Subscript, ref., indi-
cates values being used in industry before changeover to near-optimal conditions.
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one point (say, point A in Fig. 1) to any other (say, point B), one objective function
improves while the other worsens. The choice of the preferred solution from among
these optimal sets of points depends on additional information, which often takes a
non-quantifiable form.

It is interesting that considerable improvement in the operation of the industrial
reactor was indicated by this study, and we understand that these results have been
implemented on the industrial reactor.

Gupta and Gupta[12] extended this work on the industrial nylon-6 reactor
system to consider the multiobjective optimization of the reactor-cum-control valve
assembly. They considered the fractional opening of the control valve as one of the
decision variables (again, a function of time), instead of the rate of release of vapor
from the reactor. The second decision variable was the temperature of the jacket
fluid, a scalar. The Pareto optimal solutions obtained for this system were found
to be worse when compared to the solutions obtained by Mitra et al., who had
studied the reactor alone (see Fig. 1). This was because the operation of the control
valve that released the vapor excluded certain sets of values of VT(t), which were
permitted in the study of Mitra et al.[9]. It is clear that for industrial systems, the
optimization of the entire system should be carried out.

Garg and Gupta[13] applied NSGA to the multiobjective optimization of free
radical bulk polymerization reactors for PMMA, in which diffusional effects (the
Trommsdorff, cage, and glass effects) are manifested. The two-objective functions
used were the minimization of (i) the total reaction time, tf, and (ii) the polydispersity
index, Qf, of the product. It is well known that the polymer properties are not only
related to the average molecular weight but to the breadth of the molecular weight
distribution, reflected through Q. End-point constraints were used on mn and xm,
similar to that for nylon-6. Optimal temperature histories, T(t), were generated. It
is interesting that a unique optimal solution, instead of a Pareto set of several opti-
mal points, was obtained. This result was of considerable importance because a con-
troversy had existed on this point for several years, based on earlier optimization
studies that used a scalar objective function composed of a weighted sum of the
two objectives.

Polyethylene terephthalate (PET) is another commercially important commodity
polymer, mostly used in the manufacture of synthetic fibers. Bhaskar et al.[14] formu-
lated a multi-objective optimization problem for an industrial, third-stage, conti-
nuous wiped-film finishing reactor used to produce this polymer. The objective
functions used in this problem were to minimize the concentrations of two undesir-
able side products, namely, that of the (i) acid end groups (these lead to breakage of
filaments during the high-humidity spinning operation) and (ii) the vinyl end-groups
(this leads to a coloration of the fiber) in the output stream. An equality constraint
was imposed on the degree of polymerization, DPout, of the product, to produce PET
having a desired value, DPd (i.e., DPout¼DPd), of about 82. The acid end-group
concentration in the product was further restricted to lie below a certain value
(an inequality constraint), whereas the concentration of the diethylene glycol end
group—which affects the crystallinity and, therefore, the melting point of the PET-
adversely, but helps improve the dyeability of the fiber—in the product was restricted
to lie in a specified range (two inequality constraints). The three inequality con-
straints were taken care of by ‘‘penalty-killing’’ of the chromosomes that violated
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these constraints. The solution of the problem was found to be a unique point, and
no Pareto set of optimal solutions was obtained when temperature was included
among the decision variables. The unique optimal solution was found to be superior
to the current operating conditions in the industrial reactor studied. It is interesting
that a single application of NSGA-I could not provide the correct optimal point
(or Pareto, whenever that existed), and multiple applications of the algorithm
(with different seeds for the random-number generator) were necessary. Clearly,
the algorithm fails in this case. Thus, this problem, is an unusual one and can be used
as a test problem for improved optimization codes.

Another application of considerable industrial importance is the optimization of
the continuous casting of polymethyl methacrylate (PMMA) films in a furnace. The
two objective functions[15] are (i) the maximization of the cross section-average value
of the monomer conversion at the end of the furnace, xm,av,f, and (ii) the minimi-
zation of the length, zf, of the furnace. The end-point constraint used was that the
section-average value of the number average chain length in the product, mn,av,f,
should be equal to a desired value, mn,d., again because of strength considerations.
In addition, a ‘‘local’’ constraint is to be satisfied in this problem. This takes the form
that the temperature at any point in the film must be below an upper safe value,
to prevent degradation (discoloration) of the polymer film. The decision variables
used were the temperature of the isothermal plug-flow tubular reactor (PFTR),
used as a pre-polymerizer, concentration of the initiator in the feed to this PFTR,
monomer conversion at the end of this PFTR, film thickness in the furnace (all
scalars), and the temperature programming, Tw(z), in the furnace (a continuous
function). The local constraint was taken care of by using the penalty killing
procedure.

Recently, Kasat et al.[16] studied the multiobjective optimization of a polystyrene
reactor using GA. The algorithm used here is an algorithm based on elitism,
viz., NSGA-II,[10] an improved version of NSGA-I. The two-objective functions used
here are i) minimization of the residence time in the reactor and ii) maximization of
the monomer conversion. The decision variables used are the temperature history
and the initiator concentration (scalar) in the feed. An end-point constraint is
imposed on the mn of the product. NSGA-II has been adapted to apply to decision
variables that are continuous functions of time. Pareto optimal solutions are
obtained (see Fig. 2).

2.2. Scheduling

Although most of the applications of GA in polymer science and engineering
have been in the area of polymerization engineering, as described above, SGA has
been applied in a few other areas as well. Again, the important aspect in all these
studies is the emphasis on achieving desired material properties. Wang et al.[17] used
GA for on-line scheduling of an industrial unit manufacturing several grain-size frac-
tions of two types of expandable polystyrene. This plant involves several batch
reactors, followed by mixers and then continuous finishing units. The task was to
determine the sequence and timing of the several units in the plant, as well as to
choose the feed rates for the two finishing lines following the mixers. The objective
was to produce the required grain-size fractions before the due dates without
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unnecessary production of unwanted fractions. In the algorithm, overproduction
and underproduction were penalized with different weights. They found that the
quality of solutions obtained by GA was comparable with those obtained by
mixed-integer non-linear programming while the computing times were moderate.

2.3. Polymer Science

Nagasaka and Yada[18] carried out the reverse design of polymers using GA.
This is achieved by generating several chromosomes representing the structure of
the polymer and then predicting the corresponding fitness functions (properties).
Quantitative structure-property relationship (QSPR) methods have been used. These
workers have constructed a code, EXPOD, for the reverse design of polymers.
A similar study on the computer-aided molecular design of polymers has been
reported by Venkatasubramanian et al.[19]. This uses GA to design new molecules
having desired properties. They illustrate this with some case studies in polymer
design. Anantha and Venkatasubramanian[20] studied the influence of the computa-
tional parameters of GA on its performance for large-scale molecular design of
polymers. They showed that the performance of GA could be enhanced by using
diversified sampling schemes, adaptive parameter tuning, and interactive inclusion
of additional design knowledge.

Patel et al.[21] developed quantitative structure-property relationships using GA
for a training set of 16 polymers for which the gaseous diffusion constants of CO2,
N2, and O2 were measured. They found that the bulk modulus of the polymer is

Figure 2. Pareto solutions for a polystyrene reactor[16] mn,d¼ 700.
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the dominant physicochemical polymer property that influences the diffusion of these
gases. They constructed QSPR diffusion models for these three gases. This informa-
tion could be used for the selection of processing and packaging materials.

Hanagandi et al.[22] modeled polymer adsorption on a solid surface using a
self-consistent field approach. The governing equations were cast in terms of an
optimization problem, and GA was used to solve it. The objective function was to
minimize the sum of square errors between the guess values of the several volume
fractions, fi, of the polymer in the ith layer (lattice theory) and the predicted values.
It is interesting that it was observed that use of GA cascaded with a gradient search
technique was superior to GA alone. A similar cascaded approach was also found to
be superior by Chakravarthy et al.[5] for MMA polymerization.

It is clear that multiobjective function optimization has not yet been used in
these other areas of polymer materials science, and there is considerable potential
available.

2.4. Polymer Processing

The manufacture of polymer composites using liquid composite molding
involves the injection of a reactive resin into a closed mold with preplaced fibrous
reinforcements. Simulation codes that provide results on mold filling for a specified
location of the gates are available. Young[23] developed an optimization scheme
using GA to search for the optimal locations of the gates that minimize the mold-
filling pressure, uneven filling pattern, and the temperature difference during the
mold-filling process.

McKay et al.[24] compared two data-based extruder modeling paradigms. A
locally recurrent neural network and GA were used to develop inferential models
of the polymer viscosity using measurements from an industrial plasticating extru-
der. They demonstrated that both of these two techniques produced adequate
non-linear dynamic inferential models. However, GA produced models that per-
formed better than those obtained with use of the locally recurrent neural network.
Covas et al.[25] obtained Pareto optimal operating conditions of plasticating single
screw extruders using GA.

Resin transfer molding (RTM) is one of the most promising fabrication methods
for midvolume, high-performance polymer composite structures. Liang et al.[26] and
Luo et al.[27] introduced a systematic approach for the optimal design of RTM tool-
ing. The approach was built on a three-dimensional RTM simulation model coupled
with a neural network-GA optimization procedure. The simulation model was used
to predict resin flow patterns (potential quality problems) and processing efficiency
(mold-filling time). The GA is applied to this rapid RTM process model to search
for the optimum solution. This tooling design scheme enables an engineer to deter-
mine the optimum locations of injection gates and vents for the best processing
performance [i.e., short filling times and high levels of quality (minimum defects)].
It is evident that optimal processing conditions would lead to the production of final
products having desired mechanical properties. These studies in the optimization of
polymer processing operations can easily be applied to other non-polymer processing
applications.
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3. CONCLUSIONS

It can be seen that several workers have started using GA in polymer science
and engineering in the last decade. The more advanced applications involve multi-
objective optimizations. These have been reported primarily in the area of polymer
reaction engineering. Several improvements and ‘‘tricks’’ have been used to obtain
optimal solutions. These could be used to advantage in other areas as well, even
beyond the realm of polymer science and engineering. Some effort involving single-
objective functions also has been reported in other areas of polymer science and
engineering such as polymer processing, polymer science, and scheduling of manu-
facturing processes. With the increase in awareness about GA, we hope to see an
increase in its applications in the next few years.
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